佐治亚理工大学分析学硕士专业 教你利用大数据制定成功的商业战略!
身处在互联网时代,每天都会有大量的数据产生,如何利用这些大量的数据制定成功的商业战略成为了企业占领市场的核心力量,从而对数据分析人才的需求量与日俱增,为了顺应时代的需求,佐治亚理工大学就开设了分析学硕士专业,下面,就随小编来看看吧,希望对大家有所帮助:
Master of Science in Analytics
分析学理学硕士是一个跨学科的分析和数据科学项目,通过结合谢勒商学院、计算学院和工程学院的世界级专业知识,充分利用佐治亚理工学院在统计、运筹学、计算和商业方面的优势。通过整合这些国家排名项目的优势,毕业生将学习以独特和跨学科的方式整合技能,从而对分析问题产生深刻的见解。
课程设置:
核心与顶点课程
CSE 6040 Computing for Data Analytics
ISyE 6501 Introduction to Analytics Modeling
MGT 8803 Introduction to Business for Analytics
CSE 6242 Data and Visual Analytics
MGT 6203 Data Analytics in Business
CSE/ISyE/MGT 6748 Applied Analytics Practicum
统计学课程
CS 7641 Machine Learning
CSE/ISyE 6740 Computational Data Analytics (Machine Learning)
ISyE 6402 Time Series Analysis
ISyE 6404 Nonparametric Data Analysis
ISyE 6405 Statistical Methods for Manufacturing Design/Improvement
ISyE 6412 Theoretical Statistics
ISyE 6413 Design of Experiments
ISyE 6414 Regression Analysis
ISyE 6416 Computational Statistics
ISyE 6420 Bayesian Statistics
ISyE 6783 Financial Data Analysis
ISyE 6805 Reliability Engineering
ISyE 6810 Systems Monitoring and Prognostics
ISYE 7401 Advanced Statistical Modeling
ISyE 7405 Multivariate Data Analysis
ISyE 7406 Data Mining and Statistical Learning
ISyE 8803 High-Dimensional Data Analytics
ISyE 8843 Mathematical Foundations of Machine Learning
计算机课程
CSE 6010 Computational Problem Solving for Scientists and Engineers
CSE 6140 Computational Science and Engineering Algorithms
CSE 6141 Massive Graph Analytics
CSE 6220 High Performance Computing
CSE 6230 High Performance Parallel Computing
CSE 6240 Web Search and Text Mining
CSE 6250 Big Data for Healthcare
CSE 6241 Pattern Matching
CSE 6250 Big Data in Healthcare
CSE/ECE 6730 Modeling and Simulation: Fundamentals and Implementation
CSE/ISYE 6740 Computational Data Analysis (Machine Learning)
CS 6220 Big Data Systems and Analytics
CS 6400 Database Systems Concepts and Design
CS 6476 Computer Vision
CS 6730 Data Visualization Principles and Applications
CS 6750 Human-Computer Interaction
CS 7450 Information Visualization
CS 7637 Knowledge-based AI
CS 7641 Machine Learning
CS 7642 Reinforcement Learning
CS 7643 Deep Learning
CS 7646 Machine Learning for Trading
CS 7650 Natural Language Processing
CS 8803 Data Analysis Using Deep Learning
CS 8803 Visual Data Analysis
CP 6514 Introduction to Geographic Information Systems
MGT 8803 Data Visualization
商学课程
MGT 6028 Financial Reporting and Analysis of Technology Firms
MGT 6057 Business Process Analysis and Design
MGT 6090 Management of Financial Institutions
MGT 6304 Customer Relationship Management
MGT 6310 Marketing Research
MGT 6311 Digital Marketing
MGT 6400 Pricing Analytics and Revenue Management
MGT 6401 Supply Chain Modeling
MGT 6450 Project Management
MGT 6451 Business Intelligence and Analytics
MGT 8803 Behavioral Economics
MGT 8803 Business Analytics Practicum
MGT 8803 Data Visualization
MGT 8803 Data Analytics in Accounting
MGT 8803 Marketing Analytics and Pricing Strategy
MGT 8803 Risk Analytics
MGT 8803 Understanding Markets with Data Science
CS/MGT 6725 Information Security Strategies and Policy
CS/MGT 6726 Privacy, Technology, Policy and Law
运筹学课程
CS 7510 Graph Algorithms
ISyE 6230 EDA (Game Theory)
ISyE 6333 Operations Research I
ISyE 6334 Operations Research II
ISyE 6644 Simulation
ISyE 6645 Monte Carlo Methods
ISyE 6650 Probabilistic Models
ISyE 6663 Nonlinear Optimization
ISyE 6669 Deterministic Optimization
ISyE 6679 Computational Methods
应用分析学课程
CP 6514 Introduction to Geographic Information Systems
CSE 6250 Big Data in Healthcare
ISyE 6201 Manufacturing Systems
ISyE 6202 Warehousing Systems
ISyE 6203 Transportation and Supply Chain Systems
ISyE 6230 Public Impact Applications of OR
ISyE 6335 Supply Chain Engineering I
ISyE 6336 Supply Chain Engineering II
ISyE 6337 Supply Chain Engineering III
申请截止日期:
春季入学:
标准申请截止日期:6月15日
最终申请截止日期:8月1日
秋季入学:
标准申请截止日期:2月1日
最终申请截止日期:3月15日
申请条件:
所有申请人需要具备:
1. 地区认可机构的本科学士学位或同等学历。
2. 至少一门大学水平的课程或具有同等的知识:
概率和统计
Python计算机编程,Python计算入门*
微积分和基本线性代数**
*即使你有一些高级语言的经验——C, c++, Java, Python, FORTRAN——在开始OMS分析课程之前,学习Python计算入门仍然会很有帮助。
**没有数学或计算机背景的申请人也可以被录取。在这种情况下,学生要么在开始学习课程前自学必要的材料,要么在被录取后参加一门或更多的预科课程。
GRE或GMAT成绩可选
描述职业目标、目标、攻读高级学位的决定以及你申请的其他研究生项目的目的陈述
语言要求:
雅思总分≥7.5分(阅读、听力、口语至少达到6.5分;写作最低成绩为6.0)
托福iBT总分≥100分(每部分得分20分或以上)
综上所述,以上讲的就是关于佐治亚理工大学分析学硕士专业的相关问题介绍,希望能给各位赴美留学的学子们指点迷津。近年来,赴美留学一直是广大学生最热门的话题,同时,很多学生对于签证的办理、院校的选择、就业的前景、学习的费用等诸多问题困扰不断,别担心,IDP留学专家可以为你排忧解难,同时,更多关于赴美留学的相关资讯在等着你,绝对让你“浏览”忘返。在此,衷心祝愿各位学子们能够顺利奔赴自己心目中理想的学校并且学业有成!