• 免费咨询留学:400-697-9728
  • 服务监督热线:400-821-8688
美国留学专业定位
  • 选择学位阶段
  • 高中
  • 预科
  • 语言课程
  • 职业教育
  • 研究生
  • 大学本科
  • 博士

约翰霍普金斯大学数据科学硕士专业培养下一代数据科学的领导者!

  随着网络的普及,每时每刻都会有大量的数据被产生和存储下来,如何将这些数据变成有价值的商业信息则成为了各个公司竞争的核心之力,从而诞生了数据科学专业,为了顺应时代的需求,约翰霍普金斯大学就开设了数据科学硕士专业,下面,就随小编来看看吧,希望对大家有所帮助:

约翰霍普金斯大学数据科学硕士专业

  MSE in Data Science

  数据科学硕士学位将提供应用数学、统计学和计算机科学的培训,作为理解和欣赏现有数据科学工具的基础。该项目旨在通过强调掌握将真实世界的数据驱动问题转化为数学问题所需的技能,并通过使用各种科学工具来解决这些问题,从而培养下一代数据科学的领导者。

  课程设置:

  数据科学导论(必修)

  EN.553.636 Introduction to Data Science

  核心区域

  统计学

  秋季和春季学期

  EN.553.630 Introduction to Statistics. 

  秋季学期

  EN.553.632 Bayesian Statistics

  EN.553.730 Statistical Theory I

  EN.601.677 Causal Inference

  EN.553.613 Applied Statistics and Data Analysis

  春季学期

  EN.553.731 Statistical Theory II

  EN.553.738 High-Dimensional Approximation, Probability, and Statistical Learning

  EN.553.733 Advanced Topic in Bayesian Analysis

  EN.553.739 Statistical Pattern Recognition Theory & Methods

  EN.570.654 Geostatistics: Understanding Spatial Data

  EN.553.639 Time Series Analysis

  机器学习

  秋季与春季学期

  EN.601.675 Machine Learning

  秋季学期

  EN.520.612 Machine Learning for Signal Processing

  EN.520.637 Foundations of Reinforcement Learning

  EN.520.647 Information Theory

  EN.520.651 Random Signal Analysis

  EN.525.724 Introduction to Pattern Recognition (online)

  EN.553.740 Machine Learning I

  EN.580.709 Sparse Representations in Computer Vision and Machine Learning

  EN.601.634 Randomized and Big Data Algorithms

  EN.601.677 Causal Inference

  EN.601.682 Machine Learning: Deep Learning

  EN.601.780 Unsupervised Learning: Big Data to Low-Dimensional Representations

  EN.601.674 Machine Learning: Learning Theory

  春季学期

  EN.520.638 Deep Learning

  EN.520.648 Compressed Sensing and Sparse Recovery

  EN.520.666 Information Extraction

  EN.535.741 Optimal Control and Reinforcement Learning (online)

  EN.553.602 Research and Design in Applied Mathematics: Data Mining

  EN.553.738 High-Dimensional Approximation, Probability, and Statistical Learning

  EN.553.741 Machine Learning II

  EN.601.676 Machine Learning: Data to Models

  EN.625.692 Probabilistic Graphical Models (online)

  量化

  秋季学期

  EN.553.761 Nonlinear Optimization I

  EN.553.665 Introduction to Convexity

  EN.520.618 Modern Convex Optimization

  春季学期

  EN.553.762 Nonlinear Optimization II

  EN.553.763 Stochastic Search and Optimization

  EN.601.681 Machine Learning: Optimization

  EN.553.766 Combinatorial Optimization

  计算机

  秋季与春季学期

  EN.601.633 Introduction to Algorithms

  秋季学期

  EN.553.688 Computing for Applied Mathematics

  EN.601.620 Parallel Programming

  EN.601.647 Computational Genomics: Sequences

  春季学期

  EN.601.646 Sketching and Indexing for Sequences

  EN.520.617 Computation for Engineers

  选修课

  计算医学

  秋季与春季学期

  AS.410.633 Introduction to Bioinformatics (online)

  AS.410.635 Bioinformatics: Tools for Genome Analysis (online)

  EN.605.620 Algorithms for Bioinformatics (cannot be taken with EN.605.621)

  EN.605.621 Foundations of Algorithms (cannot be taken with EN.605.620)

  秋季学期

  AS.410.671 Gene Expression Data Analysis and Visualization (online)

  EN.605.653 Computational Genomics

  春季学期

  EN.553.650 Computational Molecular Medicine (offered spring)

  EN.520.659 Machine Learning for Medical Applications

  计算机视觉

  秋季与春季学期

  EN.601.661 Computer Vision

  EN.520.614 Image Processing and Analysis

  秋季学期

  EN.520.646 Wavelets & Filter Banks

  EN.520.665 Machine Perception

  春季学期

  EN.601.783 Vision as Bayesian Inference

  EN.520.623 Medical Image Analysis

  EN.553.693 Mathematical Image Analysis

  EN.520.615 Image Processing and Analysis II

  EN.525.733 Deep Learning for Computer Vision (online)

  金融数学

  秋季学期

  EN.553.627 Stochastic Processes and Applications to Finance I

  EN.553.641 Equity Markets and Quantitative Trading

  EN.553.642 Investment Science

  EN.553.644 Introduction to Financial Derivatives

  EN.553.646 Risk Measurement and Management in Financial Markets

  EN.553.649 Advanced Equity Derivatives

  春季学期

  EN.553.628 Stochastic Processes and Applications to Finance II

  EN.553.645 Interest Rate and Credit Derivatives

  EN.553.753 Commodity Markets and Trade Finance

  数学与数据科学

  秋季学期

  EN.553.633 Monte Carlo Methods

  EN.553.792 Matrix Analysis and Linear Algebra

  EN.601.634 Randomized and Big Data Algorithms

  语言与言语

  秋季学期

  EN.601.665 Natural Language Processing

  春季学期

  EN.520.666 Information Extraction

  EN.520.680 Speech and Auditory Processing by Humans and Machines

  EN.601.769 Events Semantics in Theory and Practice

  额外课程

  EN.520.650 Machine Intelligence

  EN.580.691 Learning, Estimation and Control

  EN.601.615 Databases

  EN.601.663 Algorithms for Sensor-Based Robotics

  Data Science Capstone Experience

  EN.553.806 Capstone Experience

约翰霍普金斯大学数据科学硕士专业

  申请条件:

  学生必须完成学士学位,最好是工程、数学、计算机科学或其他科学专业。此外,候选人应至少完成微积分(通过多元微积分),线性代数,微分方程,概率,计算机编程(如c++或Python)的本科水平的课程,最好辅之以统计学课程和至少一门证明写作课程。

  语言要求:

  托福成绩不低于100分(网考)或600分(纸考),雅思成绩达到7分

  约翰斯·霍普金斯大学

  约翰斯·霍普金斯大学(The Johns Hopkins University),简称Hopkins或JHU,成立于1876年,是一所世界顶级的著名私立大学,美国第一所研究型大学,也是北美顶尖大学学术联盟美国大学协会(AAU)的14所创始校之一。美国国家科学基金会连续33年将该校列为全美科研经费开支最高的大学。截止目前,学校的教员与职工共有37人获得过诺贝尔奖。

  综上所述,以上讲的就是关于约翰霍普金斯大学数据科学硕士专业的相关问题介绍,希望能给各位赴美留学的学子们指点迷津。近年来,赴美留学一直是广大学生最热门的话题,同时,很多学生对于签证的办理、院校的选择、就业的前景、学习的费用等诸多问题困扰不断,别担心,IDP留学专家可以为你排忧解难,同时,更多关于赴美留学的相关资讯在等着你,绝对让你“浏览”忘返。在此,衷心祝愿各位学子们能够顺利奔赴自己心目中理想的学校并且学业有成!


关键词:
约翰霍普金斯大学数据科学硕士专业 约翰霍普金斯大学 美国留学热门专业
课程匹配工具