• 免费咨询留学:400-697-9728
  • 服务监督热线:400-821-8688
美国留学专业定位
  • 选择学位阶段
  • 高中
  • 预科
  • 语言课程
  • 职业教育
  • 研究生
  • 大学本科
  • 博士

工业机器人2.0时代来临 宾夕法尼亚大学机器人硕士专业未来可期!

  近几年,机器人在工业上应用广泛,比如:汽车制造、3C电子制造、五金制造、陶瓷卫浴、物流运输……各个行业都运用了工业机器人来替代,工业机器人2.0时代已经来临,从而对机器人研发人才的需求量持续上涨,为了顺应时代的需求,宾夕法尼亚大学就开设了机器人硕士专业,下面,就随小编来看看吧,希望对大家有所帮助:

  Master’s in Robotics

  这个多学科项目由计算机和信息科学系、电气和系统工程系、机械工程和应用力学系联合发起。

  由世界顶尖的机器人研究中心之一的GRASP实验室管理,教育学生在机器人、视觉、感知、控制、自动化和机器学习的科学和技术。

  该课程旨在为学生提供全面的机器人背景,同时也提供足够的灵活性,让学生专注于更广泛的领域内的特定领域的研究。

  课程设置:

  Artificial Intelligence:

  CIS 519 Applied Machine Learning

  CIS 520 Machine Learning

  CIS 521 Fundamentals of AI

  ESE 650 Learning in Robotics

  Robot Design and Analysis:

  MEAM 510 Design of Mechatronic Systems

  MEAM 520 Introduction to Robotics

  MEAM 620 Advanced Robotics

  Control:

  ESE 500 Linear Systems

  ESE 505/MEAM 513 Control Systems Design

  MEAM 517 Control & Optimization w/Applications in Robotics

  ESE 619 Model Predictive Control

  Perception:

  CIS 580 Machine Perception

  CIS 581 Computer Vision & Computational Photography

  CIS 680 Adv. Topics in Machine Perception

  Technical Elective Courses (must complete at least 5)

  BE 521 Brain-Computer Interfaces

  BE 570 Biomechatronics

  CIS 502 Analysis of Algorithms

  CIS 510 Curves & Surfaces: Theory & Applications

  CIS 511 Theory of Computation

  CIS 515 Foundations of Linear Algebra & Optimization

  CIS 519 Applied Machine Learning

  CIS 520 Machine Learning

  CIS 521 Fundamentals of AI

  CIS 526 Machine Translation

  CIS 530 Computational Linguistics

  CIS 540 Principles of Embedded Computation

  CIS 541 Embedded Software for Life-Critical Applications

  CIS 545 Big Data Analytics

  CIS 560 Computer Graphics

  CIS 562 Computer Animation

  CIS 563 Physically Based Animation

  CIS 564 Game Design & Development

  CIS 565 GPU Programming & Architecture

  CIS 580 Machine Perception

  CIS 581 Computer Vision & Computational Photography

  CIS 610 Advanced Geometric Methods

  CIS 620 Advanced Topics in AI

  CIS 625 Computational Learning Theory

  CIS 680 Adv. Topics in Machine Perception

  CIS 700 Data-Driven Robotic Perception and Control (*other topics considered a general elective for ROBO)

  CIS 700 Integrated Intelligence for Robotics (*other topics considered a general elective for ROBO)

  CIS 700 Topics in Machine Perception (*other topics considered a general elective for ROBO)

  ENM 510 Foundations of Engineering Math I

  ENM 511 Foundations of Engineering Math II

  ENM 520 Principles and Techniques of Applied Math I

  ENM 521 Principles and Techniques of Applied Math II

  ESE 500 Linear Systems

  ESE 504 Introduction to Optimization

  ESE 505/MEAM 513 Control Systems Design

  ESE 512 Dynamical Systems for Engineering and Biological Applications

  ESE 514 Graph Neural Networks

  ESE 518 Learning for Dynamics

  ESE 519 Real Time & Embedded Systems

  ESE 530 Elements of Probability Theory & Random Processes

  ESE 531 Digital Signal Processing

  ESE 546 Principle of Deep Learning

  ESE 547 Introduction to Legged Locomotion

  ESE 601 Hybrid Systems

  ESE 605 Convex Optimization

  ESE 615 F1/10 Autonomous Racing

  ESE 617 Nonlinear Systems

  ESE 618 Learning for Dynamics and Control

  ESE 619 Model Predictive Control

  ESE 625 Nanorobotics

  ESE 650 Learning in Robotics

  ESE 680 Dynamic Programming (*other topics considered a general elective for ROBO)

  ESE 680 Learning for Controls (*other topics considered a general elective for ROBO)

  IPD 501 Integrated Computer-Aided Design, Manufacturing & Analysis

  MEAM 508 Materials for Manufacturing

  MEAM 510 Design of Mechatronic Systems

  MEAM 513/ESE 505 Control Systems Design

  MEAM 516 Advanced Mechatronic Reactive Spaces

  MEAM 517 Control and Optimization with Applications in Robotics

  MEAM 520 Introduction to Robotics

  MEAM 535 Advanced Dynamics

  MEAM 543 Performance and Design of Unmanned Aerial Vehicles (UAVs)

  MEAM 545 Aerodynamics

  MEAM 620 Robotics

  MEAM 624 Distributed Robotics

  MEAM 625 Haptic Interfaces – not currently being offered

  PSYC 579 Experimental Methods in Perception

  ROBO 599 (ESE/CIS/MEAM 599 for older students starting before Fall 2014) *Masters Independent Study (Note: Only one Independent Study may be taken for the degree)

  ROBO 597 (ESE/CIS/MEAM 599 for students starting before Fall 2014) *Masters Thesis Research (Click here for masters thesis requirements.)

  General Elective Courses (at most 2)

  CIS 505 Software Systems

  CIS 522 Deep Learning

  CIS 523 Ethical Algorithm Design

  CIS 548 Operating Systems Design and Implementation

  CIS 550 Database & Info Systems

  CIS 553 Networked Systems

  CIS 700 Special Topic (not specifically listed on the technical electives courses page)

  EAS 512 Engineering Negotiations

  EAS 545 Engineering Entrepreneurship I

  EAS 546 Engineering Entrepreneurship II

  ENM 502 Numerical Methods & Modeling

  ENM 503 Introduction to Probability & Statistics

  ESE 540 Engineering Economics

  ESE 543 Human Systems Engineering

  ESE 545 Data Mining

  ESE 680 Special Topic (not specifically listed on the technical electives courses page)

  IPD 504/BE 514 Rehab Engineering and Design

  IPD 511 Creative Thinking & Functional Iteration in Design

  IPD 514 (MEAM514) Design for Manufacturability

  IPD 515 Product Design (formerly MEAM 515)

  IPD 525 Ergonomics/Human Factors Based Product Design

  IPD 527 (ARCH727) Industrial Design I

  PHIL 530 Philosophy of Artificial Intelligence

  申请条件:

  机器人专业理学硕士的申请人需要在计算机科学、电气工程或机械工程方面有较强的学术背景。

  综上所述,以上讲的就是关于宾夕法尼亚大学机器人硕士专业的相关问题介绍,希望能给各位赴美留学的学子们指点迷津。近年来,赴美留学一直是广大学生最热门的话题,同时,很多学生对于签证的办理、院校的选择、就业的前景、学习的费用等诸多问题困扰不断,别担心,IDP留学专家可以为你排忧解难,同时,更多关于赴美留学的相关资讯在等着你,绝对让你“浏览”忘返。在此,衷心祝愿各位学子们能够顺利奔赴自己心目中理想的学校并且学业有成!


关键词:
宾夕法尼亚大学机器人硕士专业 宾夕法尼亚大学 美国留学热门专业
课程匹配工具