PhD Comparison of Machine Learning Techniques Using Measurement Uncertainty for Analysis of Cell and Gene Therapy Manufacturing Data
  • 学历文凭

    Ph.D.

  • 专业院系

    制造工程与技术

  • 开学时间

  • 课程时长

  • 课程学费

    汇率提示

国际学生入学条件

The candidate should have achieved a 2:1 or 1st class degree (or equivalent international qualification) in a relevant discipline: computer science, biomedical science/engineering, mechanical/manufacturing engineering.

It would be advantageous if the candidate has some prior understanding of the Flow Cytometry technique and measurement uncertainty principles that will be used in this research.

IELTS: Overall score of 6.5 with not less than 6.0 in each test.
TOEFL iBT: Overall score of 92, with not less than 22 in each test
展开

IDP—雅思考试联合主办方

雅思考试总分

6.5

了解更多

  • 雅思总分:6.5
  • 托福网考总分:92
  • 托福笔试总分:160
  • 其他语言考试:PTE- Overall score of 67, with not less than 63 in each sub-test
CRICOS代码:
申请截止日期: 与IDP顾问联系以获取详细信息。

课程简介

Significant advances have been made in the field of flow cytometry, which is a core data acquisition and analysis platform for measurement and quality control of Cell and Gene Therapies. Uptake of flow cytometry automated (supervised and unsupervised) data analysis software platforms within the clinical and biomanufacturing sectors is mixed, with a lot of operators still preferring manual gating over automation due to lack of trust and resistance to change.<br><br>Recently completed research has investigated the variability of operators when completing manual analysis of flow cytometer data across a range of cell model dimensionality and complexity. Measurement uncertainty toolsets have been uniquely applied and give a more specific definition of variability in these manual analysis scenarios compared to more traditional statistical methods. This has allowed the identification of where measurement variation is potentially introduced, such that continuous improvements can be made to the Flow Cytometer measurement process and hence to the biomanufacture of cell and gene therapies. This research is now to be extended to automated software platforms.<br><br>This new research opportunity aims to investigate the application and development of measurement uncertainty analysis to the performance of flow cytometry automated software analysis platforms, (for example SPADE, FLOCK and SWIFT), to understand their variance in specific data analysis scenarios. This provides the foundation for comparison to manual analysis techniques and to the eventual definition of a full measurement uncertainty budget for the Flow Cytometer process. This will better influence how process control can be better optimised for product quality in cell and gene therapies.
展开

相关申请

  • 预科

    预科

  • 奖学金

    奖学金

  • 实习机会

    实习机会

  • 在校学习

    在校学习

  • 跨境学习

    跨境学习

  • 校园授课-线上开始

    校园授课-线上开始

  • 在线/远程学习

    在线/远程学习

学校排名

世界排名

401

数据源:泰晤士高等教育世界大学排名

关于拉夫堡大学

拉夫堡大学创办于1909年,最初是一所小型技术学院,现已成为英国乃至全球一流的院校之一,每年为数千名学生提供优质的教育,让学生获得出色的求学体验。该校是一所成功的热门院校,荣获由学生投票选出的''2020年WhatUni年度最佳大学''。拉夫堡大学主校区位于英格兰中部地区的拉夫堡小镇。这里位置优越,交通便利,拥有学生愉快地度过求学生活所需要的一切。从拉夫堡去往莱斯特市、诺丁汉和德比这些较大的城市也非常方便。拉夫堡大学为其一流的教学质量而感到自豪。该校招募了一支跨国学术团队,确保由经验丰富的专业教学人员为学生提供多样化的教育。拉夫堡学生活动中心设施一流,设有广受欢迎的夜总会和轻松的学习空间,还提供涉及学生身心健康以及学习生活各个方面的大量支持服务。那里还有许多日常使用的便利设施,其中包括商店和餐馆。拉夫堡大学在体育方面世界闻名,连续6被评为全球体育相关学科最优秀的大学(2022年QS世界大学学科排名)。该校拥有全英设施最齐全的体育中心,国际运动员也到该校使用其运动设施。拉夫堡大学可能因体育学科而为人所知,与此同时它在一系列学术科目上也有卓越的设施。拉夫堡大学热情欢迎国际学生前往就读。该校兼容并包,提供大量支持设施帮助国际学生在学习期间适应那里的生活,不断成长和发展。

在线提交申请

请详细填写您的申请材料

请选择
请选择
请选择
请选择
请选择
IDP在取得您的同意前,将不会提供您的资讯给其他机构
我同意IDP教育集团的网站使用条款隐私保护政策,并同意IDP可能在中国境外处理我的数据
请以电话、电子邮件或简讯与我联系,协助我的海外留学咨询
我希望获得IDP的最新资讯与活动信息
课程匹配

本校相关课程

其他相关课程