Master of Engineering in Materials Science and Engineering - Electronic Materials
  • 学历文凭

    Masters Degree

  • 专业院系

    材料科学

  • 开学时间

  • 课程时长

  • 课程学费

    汇率提示

国际学生入学条件

For admission to graduate study, an applicant must have a U.S. bachelor's degree or the equivalent of a U.S. bachelor's degree prior to enrollment.
Transcripts and Degrees must be in English (all post-secondary education, including transcript keys).
Unofficial transcripts should be uploaded to your graduate application. The minimum requirement for admission consideration is the completion and award of a four year U.S. bachelor's degree, or its equivalent, by the time of planned enrollment.
Personal Statement
Resume or curriculum vitae
Two letters of recommendation
Portfolio, if required by department

TOEFL score of 88 iBT
IELTS score of 6.5
展开

IDP—雅思考试联合主办方

雅思考试总分

6.5

了解更多

  • 雅思总分:6.5
  • 托福网考总分:88
  • 托福笔试总分:160
  • 其他语言考试:Duolingo score of 120<br>PTE score of 59
CRICOS代码:
申请截止日期: 与IDP顾问联系以获取详细信息。

课程简介

The next generation of devices for computing, communication, sensing and energy conversion demand new materials with novel electronic properties as well as techniques to synthesize these materials with high quality and control over defects. Electronic materials research at Rensselaer targets nanoscale interconnects, interfaces with designed electronic and thermal transport, new semiconductors, ferroelectrics, optical / plasmonic materials, 2D materials and materials for future quantum and neuromorphic computing architectures.<br><br>Electronic devices at nanoscale dimensions pose fundamental material property and processing challenges. Research at Rensselaer targets new metal interconnects for low-resistance charge transport in sub-10-nm wires, combining computational prediction of optimal materials with thin film and nanostructure growth techniques using both vapor/vacuum phase and electrochemical methods. Research in chemical mechanical planarization facilitates precise surface-flatness required for semiconductor interfaces, while molecularly-tailored interfaces enable control of interfacial thermal conductance, Fermi level pinning and charge transport.<br><br>The MSE faculty are also actively engaged in designing materials for new functionality in future electronic and photonic devices, with as yet unknown architectures. This involves the application of a wide range of tools spanning first-principles computational prediction of new materials, thin film deposition including epitaxial techniques and detailed characterization of crystal structure, nanoscale electronic and structural dynamics, and spectroscopy. These collaborative efforts target new oxides, nitrides, halide perovskite and low-dimensional materials for semiconducting, magnetic, thermoelectric, ferroelectric and plasmonic functionality. Computational and experimental research currently underway in the department specifically target material functionality for devices mimicking neurons in the brain for neuromorphic computers for efficient artificial intelligence, and quantum states of point defects as a platform for solid-state quantum computers.
展开

相关申请

  • 预科

    预科

  • 奖学金

    奖学金

  • 实习机会

    实习机会

  • 在校学习

    在校学习

  • 跨境学习

    跨境学习

  • 校园授课-线上开始

    校园授课-线上开始

  • 在线/远程学习

    在线/远程学习

学校排名

世界排名

351

数据源:泰晤士高等教育世界大学排名

在线提交申请

请详细填写您的申请材料

请选择
请选择
请选择
请选择
请选择
IDP在取得您的同意前,将不会提供您的资讯给其他机构
我同意IDP教育集团的网站使用条款隐私保护政策,并同意IDP可能在中国境外处理我的数据
请以电话、电子邮件或简讯与我联系,协助我的海外留学咨询
我希望获得IDP的最新资讯与活动信息
课程匹配

本校相关课程

其他相关课程